Age-related changes in lamin A/C expression in cardiomyocytes.

نویسندگان

  • Jonathan Afilalo
  • Igal A Sebag
  • Lorraine E Chalifour
  • Daniel Rivas
  • Rahima Akter
  • Kamal Sharma
  • Gustavo Duque
چکیده

Lamin A and C (A/C) are type V intermediate filaments that form the nuclear lamina. Lamin A/C mutations lead to reduced expression of lamin A/C and diverse phenotypes such as familial cardiomyopathies and accelerated aging syndromes. Normal aging is associated with reduced expression of lamin A/C in osteoblasts and dermal fibroblasts but has never been assessed in cardiomyocytes. Our objective was to compare the expression of lamin A/C in cardiomyocytes of old (24 mo) versus young (4 mo) C57Bl/6J mice using a well-validated mouse model of aging. Lamin B1 was used as a control. Immunohistochemical and immunofluorescence analyses showed reduced expression of lamin A/C in cardiomyocyte nuclei of old mice (proportion of nuclei expressing lamin A/C, 9% vs. 62%, P < 0.001). Lamin A/C distribution was scattered peripherally and perinuclear in old mice, whereas it was homogeneous throughout the nuclei in young mice. Western blot analyses confirmed reduced expression of lamin A/C in nuclear extracts of old mice (ratio of lamin A/C to B1, 0.6 vs. 1.2, P < 0.01). Echocardiographic studies showed increased left ventricular wall thickness with preserved cavity size (concentric remodeling), increased left ventricular mass, and a slight reduction in fractional shortening in old mice. This is the first study to show that normal aging is associated with reduced expression and altered distribution of lamin A/C in nuclei of cardiomyocytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Moderate and High Intensity Resistance Training on the Expression of PGC-1α, TFAM and AMPK of Cardiomyocytes in Elderly Rats

Background & objectives: Age-related cardiovascular dysfunction is often accompanied by impaired mitochondrial biogenesis and function. Exercise training can improve mitochondrial function and content in muscle to meet the energy demands of the cells. The purpose of the present study was to investigate the effect of moderate-intensity (MRT) and high-intensity (HRT) resistance training on the ex...

متن کامل

Cardiomyocyte-Specific Expression of Lamin A Improves Cardiac Function in Lmna−/− Mice

Lmna(-/-) mice display multiple tissue defects and die by 6-8 weeks of age reportedly from dilated cardiomyopathy with associated conduction defects. We sought to determine whether restoration of lamin A in cardiomyocytes improves cardiac function and extends the survival of Lmna(-/-) mice. We observed increased total desmin protein levels and disorganization of the cytoplasmic desmin network i...

متن کامل

Decreased Bone Formation and Osteopenia in Lamin A/C-Deficient Mice

Age-related bone loss is associated with changes in bone cellularity with characteristically low levels of osteoblastogenesis. The mechanisms that explain these changes remain unclear. Although recent in vitro evidence has suggested a new role for proteins of the nuclear envelope in osteoblastogenesis, the role of these proteins in bone cells differentiation and bone metabolism in vivo remains ...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

Investigation of age-related changes in LMNA splicing and expression of progerin in human skeletal muscles.

Age-related changes in splice-forms of LMNA, which encodes the nuclear lamina proteins lamin A/C, have not been investigated in skeletal muscle. In the rare premature ageing disease, Hutchinson-Gilford progeria syndrome (HGPS), de novo point mutations in LMNA activate a cryptic splice site in exon 11, resulting in a 150 base deletion in LMNA mRNA and accumulation of a truncated protein isoform,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 293 3  شماره 

صفحات  -

تاریخ انتشار 2007